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1 Universal Spaces

1.1 Embeddings into generalized cubes
In this lecture, I = [0, 1].
Definition 1.1. A generalized cube is I for some A # @, with the product topology.

Definition 1.2. Let X be a topological space. The family F C C(X,I) separates
points and closed sets if for all closed £ C E and x € E€, there is some f € F such

that f(z) ¢ J(E).

The existence of such functions in a Ty space is given by Tietze’s extension theorem.

Definition 1.3. If F C C(X,I) separates points and closed sets, then tere exists G C
C(X,I) such that for all closed E C X and x € E°, there exists some g € G such that
g(x) =1and g|g = 0.

Proof. For all z, E as above, choose f which separates them; that is, f(z) ¢ f(E). Then
x is contained in an interval disjoint from F, so there exists some piecewise linear bump
function ¢ such that ¢(x) = 1 and ¢ = 0 outside of this interval. Then define f, g r = o f.
Let G = {9255 : 2, E, f as above}. O

Definition 1.4. X is completely regular if it is 77 and if for all closed £ C X and
x € E°, there exists some f € C(X,I) such that f(z) =1 and f|g = 0.

This is sometimes called T3 1 /5. So a T space is completely regular if and only if C'(X, I)
separates points and closed sets.

Definition 1.5. For F C C(X,I), the map associated to Fise: X — I7 1z — (f(2)) rer.
We want to study when this is a homeomorphism.

Proposition 1.1. Let X, F,e be as above.



1. e is continuous.
2. If F separates points, then e is injective.

3. If X is Ty and F separates points and closed sets, then e is a homeomorphism X —
e(X)CI”.

Proof. The first 2 mostly follow from the construction.

1. A canonical sub-base on I is sets of the form W;I[U] = {(zy)ferLxy € U}, where
U C [0,1] is open. Now 671[7571[(]]] = f7U].

2. Let « # y € X. Then there exists f € F such that (ex)r = f(x) # f(y) = (e(y))s-
So e(x) # e(y).

3. We must show that if U is open in X, then e(U) is relatively open in e(X). Pick x € U.
We will find an open subset V of I” such that e(z) € V Ne(X) C e(U); this implies
that e~! is continuous for the relative topology. Apply the assumption to = and
E = U®. Then there exists f € F separating them, so (e(z))s ¢ mf(e[E]) = F(F).
Define V = {(yg)ger : yg € I \ m¢(e[E])}. This is open in I”. Then e(z) € V Ne(X)
by construction, and V Ne[E] = @. So V Ne[X] C e[U]. O

Corollary 1.1. The following are equivalent:
1. X is completely regular.
2. X embeds into a cube.
3. X embeds into some compact Hausdorff space.

Proof. (1) = (2): Apply the proposition with 7 = C(X, ).

(2) = (3): Cubes are compact Hausdorff spaces.

(3) = (1): We just need that subsets of completely regular spaces are completely
regular. Do this as an exercise. O

Corollary 1.2. Any compact Hausdorff space is homeomorphic to a closed subset of a
cube.

Proof. X embeds into e[X] C I for some A. Since X is compact, e[X] is compact. [4 is
Hausdorff, so e[X] is closed. O



1.2 Compactification

In general, we can embed a completely regular space into a cube. Taking its closure, we
get a compact, Hausdorff space.

Definition 1.6. A compactification of X is a pair (Y, ¢), where Y is compact Hausdorff
and ¢ is an embedding X — Y with ¢[X]| =Y.

Example 1.1. R — S' is an embedding. If we add in the extra point, we get a one-point
compactification.

Example 1.2. R — [-1,1] is an embedding. If we add the endpoints, we can get a
two-point compactification.

In general, the compactification X — e[X] C I(¢(X:D) is called the Stone-Cech com-
pactification.

X —% e[X]
N

1.3 Embeddings of compact spaces

Y

Now let (X, p) be a compact metric space.
Lemma 1.1. Compact metric spaces are separable.

Proof. For all n € N, there exists a finite S, C X such that (J,cq Bi/n(r) = X. Now
Un S,, is countable and dense. O

Corollary 1.3. C(X) is separable.

Proof. Let S C X be a countable dense subset. For y € S, let fy(z) := p(y,x). Let
Ar = {ao + X0  aify, - fyoms @ @i € Ryy;; € S}. This is an algebra, it is nowhere
vanishing, and it separates points : if  # z in X, there exists (y, ), € S such that y,, — .
So fy.(x) = 0, and f,_n(z) — p(z,2z) # 0. So Ag by the Stone-Weierstrass theorem,
which means that Ay = C(X). O

Proposition 1.2. Compact metric spaces embed into [0, 1]N.

Proof. Let A be some countable dense subset of C'(X, ). Then A separates points and
closed sets. So [0,1]4 = [0, 1] O

Remark 1.1. We can do this explicitly whenever X is separable. Let (x,), be dense in
X. Let e(x) := (min{p(z, z,),1}), € [0,1]N. This is the embedding.



Theorem 1.1 (Urysohn’s metrization theorem). Let X be 2nd countable. Then X is
metrizable if and only if it is normal. Equivalently, X embeds into [0, 1]N.

Proof. Here is the idea for showing that normality implies that X embeds into [0, 1]V.
Let £ be a countable base. Define the countabl collection F which separates U¢ and V¢
whenever U,V € £ and U°N V¢ = &. Now apply the embedding construction. O
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