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1 Universal Spaces

1.1 Embeddings into generalized cubes

In this lecture, I = [0, 1].

Definition 1.1. A generalized cube is IA for some A 6= ∅, with the product topology.

Definition 1.2. Let X be a topological space. The family F ⊆ C(X, I) separates
points and closed sets if for all closed E ⊆ E and x ∈ Ec, there is some f ∈ F such
that f(x) /∈ f(E).

The existence of such functions in a T4 space is given by Tietze’s extension theorem.

Definition 1.3. If F ⊆ C(X, I) separates points and closed sets, then tere exists G ⊆
C(X, I) such that for all closed E ⊆ X and x ∈ Ec, there exists some g ∈ G such that
g(x) = 1 and g|E = 0.

Proof. For all x,E as above, choose f which separates them; that is, f(x) /∈ f(E). Then
x is contained in an interval disjoint from E, so there exists some piecewise linear bump
function ϕ such that ϕ(x) = 1 and ϕ = 0 outside of this interval. Then define fx,E,f = ϕ◦f .
Let G = {gx,E,f : x,E, f as above}.

Definition 1.4. X is completely regular if it is T1 and if for all closed E ⊆ X and
x ∈ Ec, there exists some f ∈ C(X, I) such that f(x) = 1 and f |E = 0.

This is sometimes called T3 1/2. So a T1 space is completely regular if and only if C(X, I)
separates points and closed sets.

Definition 1.5. For F ⊆ C(X, I), the map associated to F is e : X → IF : x 7→ (f(x))f∈F .

We want to study when this is a homeomorphism.

Proposition 1.1. Let X,F , e be as above.
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1. e is continuous.

2. If F separates points, then e is injective.

3. If X is T1 and F separates points and closed sets, then e is a homeomorphism X →
e(X) ⊆ IF .

Proof. The first 2 mostly follow from the construction.

1. A canonical sub-base on IF is sets of the form π−1f [U ] = {(xf )f∈FLxf ∈ U}, where

U ⊆ [0, 1] is open. Now e−1[π−1f [U ]] = f−1[U ].

2. Let x 6= y ∈ X. Then there exists f ∈ F such that (ex)f = f(x) 6= f(y) = (e(y))f .
So e(x) 6= e(y).

3. We must show that if U is open inX, then e(U) is relatively open in e(X). Pick x ∈ U .
We will find an open subset V of IF such that e(x) ∈ V ∩ e(X) ⊆ e(U); this implies
that e−1 is continuous for the relative topology. Apply the assumption to x and
E = U c. Then there exists f ∈ F separating them, so (e(x))f /∈ πf (e[E]) = F (E).

Define V = {(yg)g∈F : yg ∈ I \ πf (e[E])}. This is open in IF . Then e(x) ∈ V ∩ e(X)
by construction, and V ∩ e[E] = ∅. So V ∩ e[X] ⊆ e[U ].

Corollary 1.1. The following are equivalent:

1. X is completely regular.

2. X embeds into a cube.

3. X embeds into some compact Hausdorff space.

Proof. (1) =⇒ (2): Apply the proposition with F = C(X, I).
(2) =⇒ (3): Cubes are compact Hausdorff spaces.
(3) =⇒ (1): We just need that subsets of completely regular spaces are completely

regular. Do this as an exercise.

Corollary 1.2. Any compact Hausdorff space is homeomorphic to a closed subset of a
cube.

Proof. X embeds into e[X] ⊆ IA for some A. Since X is compact, e[X] is compact. IA is
Hausdorff, so e[X] is closed.
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1.2 Compactification

In general, we can embed a completely regular space into a cube. Taking its closure, we
get a compact, Hausdorff space.

Definition 1.6. A compactification of X is a pair (Y, ϕ), where Y is compact Hausdorff
and ϕ is an embedding X → Y with ϕ[X] = Y .

Example 1.1. R→ S1 is an embedding. If we add in the extra point, we get a one-point
compactification.

Example 1.2. R → [−1, 1] is an embedding. If we add the endpoints, we can get a
two-point compactification.

In general, the compactification X → e[X] ⊆ I(C(X,I) is called the Stone-Čech com-
pactification.

X e[X]

Y

e

ϕ

1.3 Embeddings of compact spaces

Now let (X, ρ) be a compact metric space.

Lemma 1.1. Compact metric spaces are separable.

Proof. For all n ∈ N, there exists a finite Sn ⊆ X such that
⋃

x∈Sn
B1/n(x) = X. Now⋃

n Sn is countable and dense.

Corollary 1.3. C(X) is separable.

Proof. Let S ⊆ X be a countable dense subset. For y ∈ S, let fy(x) := ρ(y, x). Let
AR := {a0 +

∑m
i=1 aifyi · · · fyi,mi : ai ∈ R, yi,j ∈ S}. This is an algebra, it is nowhere

vanishing, and it separates points : if x 6= z in X, there exists (yn)n ∈ S such that yn → x.
So fyn(x) → 0, and fy−n(z) → ρ(x, z) 6= 0. So AR by the Stone-Weierstrass theorem,
which means that AQ = C(X).

Proposition 1.2. Compact metric spaces embed into [0, 1]N.

Proof. Let A be some countable dense subset of C(X, I). Then A separates points and
closed sets. So [0, 1]A ∼= [0, 1]N.

Remark 1.1. We can do this explicitly whenever X is separable. Let (xn)n be dense in
X. Let e(x) := (min{ρ(x, xn), 1})n ∈ [0, 1]N. This is the embedding.
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Theorem 1.1 (Urysohn’s metrization theorem). Let X be 2nd countable. Then X is
metrizable if and only if it is normal. Equivalently, X embeds into [0, 1]N.

Proof. Here is the idea for showing that normality implies that X embeds into [0, 1]N.
Let E be a countable base. Define the countabl collection F which separates U c and V c

whenever U, V ∈ E and U c ∩ V c = ∅. Now apply the embedding construction.
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