# Math 245B Lecture 10 Notes

### Daniel Raban

January 30, 2019

## 1 Universal Spaces

#### 1.1 Embeddings into generalized cubes

In this lecture, I = [0, 1].

**Definition 1.1.** A generalized cube is  $I^A$  for some  $A \neq \emptyset$ , with the product topology.

**Definition 1.2.** Let X be a topological space. The family  $\mathcal{F} \subseteq C(X, I)$  separates points and closed sets if for all closed  $E \subseteq E$  and  $x \in E^c$ , there is some  $f \in \mathcal{F}$  such that  $f(x) \notin \overline{f(E)}$ .

The existence of such functions in a  $T_4$  space is given by Tietze's extension theorem.

**Definition 1.3.** If  $\mathcal{F} \subseteq C(X, I)$  separates points and closed sets, then tere exists  $\mathcal{G} \subseteq C(X, I)$  such that for all closed  $E \subseteq X$  and  $x \in E^c$ , there exists some  $g \in \mathcal{G}$  such that g(x) = 1 and  $g|_E = 0$ .

Proof. For all x, E as above, choose f which separates them; that is,  $f(x) \notin \overline{f(E)}$ . Then x is contained in an interval disjoint from E, so there exists some piecewise linear bump function  $\varphi$  such that  $\varphi(x) = 1$  and  $\varphi = 0$  outside of this interval. Then define  $f_{x,E,f} = \varphi \circ f$ . Let  $\mathcal{G} = \{g_{x,E,f} : x, E, f \text{ as above}\}$ .

**Definition 1.4.** X is completely regular if it is  $T_1$  and if for all closed  $E \subseteq X$  and  $x \in E^c$ , there exists some  $f \in C(X, I)$  such that f(x) = 1 and  $f|_E = 0$ .

This is sometimes called  $T_{31/2}$ . So a  $T_1$  space is completely regular if and only if C(X, I) separates points and closed sets.

**Definition 1.5.** For  $\mathcal{F} \subseteq C(X, I)$ , the map associated to  $\mathcal{F}$  is  $e: X \to I^{\mathcal{F}}: x \mapsto (f(x))_{f \in \mathcal{F}}$ .

We want to study when this is a homeomorphism.

**Proposition 1.1.** Let  $X, \mathcal{F}, e$  be as above.

1. e is continuous.

- 2. If  $\mathcal{F}$  separates points, then e is injective.
- 3. If X is  $T_1$  and  $\mathcal{F}$  separates points and closed sets, then e is a homeomorphism  $X \to e(X) \subseteq I^{\mathcal{F}}$ .

*Proof.* The first 2 mostly follow from the construction.

- 1. A canonical sub-base on  $I^{\mathcal{F}}$  is sets of the form  $\pi_f^{-1}[U] = \{(x_f)_{f \in \mathcal{F}} L x_f \in U\}$ , where  $U \subseteq [0, 1]$  is open. Now  $e^{-1}[\pi_f^{-1}[U]] = f^{-1}[U]$ .
- 2. Let  $x \neq y \in X$ . Then there exists  $f \in \mathcal{F}$  such that  $(e_x)_f = f(x) \neq f(y) = (e(y))_f$ . So  $e(x) \neq e(y)$ .
- 3. We must show that if U is open in X, then e(U) is relatively open in e(X). Pick  $x \in U$ . We will find an open subset V of  $I^{\mathcal{F}}$  such that  $e(x) \in V \cap e(X) \subseteq e(U)$ ; this implies that  $e^{-1}$  is continuous for the relative topology. Apply the assumption to x and  $E = U^c$ . Then there exists  $f \in \mathcal{F}$  separating them, so  $(e(x))_f \notin \overline{\pi_f(e[E])} = \overline{F(E)}$ . Define  $V = \{(y_g)_{g \in \mathcal{F}} : y_g \in I \setminus \overline{\pi_f(e[E])}\}$ . This is open in  $I^{\mathcal{F}}$ . Then  $e(x) \in V \cap e(X)$  by construction, and  $V \cap e[E] = \emptyset$ . So  $V \cap e[X] \subseteq e[U]$ .

**Corollary 1.1.** The following are equivalent:

- 1. X is completely regular.
- 2. X embeds into a cube.
- 3. X embeds into some compact Hausdorff space.

*Proof.* (1)  $\implies$  (2): Apply the proposition with  $\mathcal{F} = C(X, I)$ .

(2)  $\implies$  (3): Cubes are compact Hausdorff spaces.

(3)  $\implies$  (1): We just need that subsets of completely regular spaces are completely regular. Do this as an exercise.

**Corollary 1.2.** Any compact Hausdorff space is homeomorphic to a closed subset of a cube.

*Proof.* X embeds into  $e[X] \subseteq I^A$  for some A. Since X is compact, e[X] is compact.  $I^A$  is Hausdorff, so e[X] is closed.

#### **1.2** Compactification

In general, we can embed a completely regular space into a cube. Taking its closure, we get a compact, Hausdorff space.

**Definition 1.6.** A compactification of X is a pair  $(Y, \varphi)$ , where Y is compact Hausdorff and  $\varphi$  is an embedding  $X \to Y$  with  $\varphi[X] = Y$ .

**Example 1.1.**  $\mathbb{R} \to S^1$  is an embedding. If we add in the extra point, we get a **one-point** compactification.

**Example 1.2.**  $\mathbb{R} \to [-1,1]$  is an embedding. If we add the endpoints, we can get a two-point compactification.

In general, the compactification  $X \to \overline{e[X]} \subseteq I^{(C(X,I)}$  is called the **Stone-Čech compactification**.



#### **1.3** Embeddings of compact spaces

Now let  $(X, \rho)$  be a compact metric space.

Lemma 1.1. Compact metric spaces are separable.

*Proof.* For all  $n \in \mathbb{N}$ , there exists a finite  $S_n \subseteq X$  such that  $\bigcup_{x \in S_n} B_{1/n}(x) = X$ . Now  $\bigcup_n S_n$  is countable and dense.

**Corollary 1.3.** C(X) is separable.

Proof. Let  $S \subseteq X$  be a countable dense subset. For  $y \in S$ , let  $f_y(x) := \rho(y, x)$ . Let  $\mathcal{A}_{\mathbb{R}} := \{a_0 + \sum_{i=1}^m a_i f_{y_i} \cdots f_{y_i, m_i} : a_i \in \mathbb{R}, y_{i,j} \in S\}$ . This is an algebra, it is nowhere vanishing, and it separates points : if  $x \neq z$  in X, there exists  $(y_n)_n \in S$  such that  $y_n \to x$ . So  $f_{y_n}(x) \to 0$ , and  $f_{y-n}(z) \to \rho(x, z) \neq 0$ . So  $\overline{\mathcal{A}_{\mathbb{R}}}$  by the Stone-Weierstrass theorem, which means that  $\overline{\mathcal{A}_{\mathbb{Q}}} = C(X)$ .

**Proposition 1.2.** Compact metric spaces embed into  $[0,1]^{\mathbb{N}}$ .

*Proof.* Let  $\mathcal{A}$  be some countable dense subset of C(X, I). Then  $\mathcal{A}$  separates points and closed sets. So  $[0, 1]^{\mathcal{A}} \cong [0, 1]^{\mathbb{N}}$ .

**Remark 1.1.** We can do this explicitly whenever X is separable. Let  $(x_n)_n$  be dense in X. Let  $e(x) := (\min\{\rho(x, x_n), 1\})_n \in [0, 1]^{\mathbb{N}}$ . This is the embedding.

**Theorem 1.1** (Urysohn's metrization theorem). Let X be 2nd countable. Then X is metrizable if and only if it is normal. Equivalently, X embeds into  $[0,1]^{\mathbb{N}}$ .

*Proof.* Here is the idea for showing that normality implies that X embeds into  $[0,1]^{\mathbb{N}}$ . Let  $\mathcal{E}$  be a countable base. Define the countabl collection  $\mathcal{F}$  which separates  $U^c$  and  $V^c$  whenever  $U, V \in \mathcal{E}$  and  $U^c \cap V^c = \emptyset$ . Now apply the embedding construction.